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Abstract. User interaction logs allow us to analyze the execution of
tasks in a business process at a finer level of granularity than event logs
extracted from enterprise systems. The fine-grained nature of user inter-
action logs open up a number of use cases. For example, by analyzing such
logs, we can identify best practices for executing a given task in a process,
or we can elicit differences in performance between workers or between
teams. Furthermore, user interaction logs allow us to discover repetitive
and automatable routines that occur during the execution of one or more
tasks in a process. Along this line, this chapter introduces a family of
techniques, called Robotic Process Mining (RPM), which allow us to
discover repetitive routines that can be automated using robotic process
automation technology. The chapter presents a structured landscape of
concepts and techniques for RPM, including techniques for user inter-
action log preprocessing, techniques for discovering frequent routines,
notions of routine automatability, as well as techniques for synthesizing
executable routine specifications for robotic process automation.

1 Introduction

The rigidity and complexity of legacy applications, particularly in large organi-
zations, engender situations in which workers are required to perform repetitive
routines to transfer data from one application to another via their user interfaces.
Examples of such repetitive routines include:

– Downloading and opening an Excel workbook attached to an inbound email
(e.g. a list of academic credentials of a prospective student) and copying data
records from one of the sheets in this workbook (e.g. the credential details
of the student) into a student admission system accessed via a web browser.

– Accesing a legacy ERP system to retrieve one or more purchase orders of
a given customer, copying data from each of these purchase orders into a
consolidated sheet, and sending the resulting spreadsheet to a customer by
email.
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The automation of such routines can eliminate tedious and demotivating
manual work, reduce cycle times, and enhance data quality. Advances in Robotic
Process Automation (RPA) technology [1, 38] make it possible to automate rou-
tines like the above ones. However, building and maintaining RPA bots requires
a significant investment and hence, it is important for organizations to make the
right decisions as to which bots they should build. In a typical organization, there
may be tens of thousands of types of tasks, and any of them may involve one or
more repetitive routines. Some routines are sufficiently frequent and widespread
across the organization that they can be identified and scoped via interviews,
focus groups, and workshops with workers. Other routines, however, may be
less widespread or performed sporadically, but still sufficiently often that it is
beneficial to automate them.

Robotic Process Mining (RPM) is a family of techniques to discover repetitive
routines that can be automated using RPA technology, by analyzing interactions
between one or more workers and one or more software applications, during
the performance of one or more tasks in a business process. In general, RPM
techniques take as input User Interaction logs (UI logs).5 These UI logs are
recorded while workers interact with one or more applications, typically desktop
applications. Based on these logs, RPM techniques produce specifications of one
or more routines that can be automated using RPA or related tools.

Depending on the type of technique, the discovered routine specifications may
be conceptual (i.e. non-executable) or executable. A conceptual routine specifica-
tion provides guidance to analysts and developers to help them scope a repetitive
routine and to build an executable script to fully or partially automate the rou-
tine. For example, a non-executable specification of a routine could take the
form of a textual description (in natural language), or a sequence of screenshots
corresponding to repetitive sequences of interactions, or a sequence of user in-
teractions (e.g. [“open sheet”,“select cell”, “edit cell”, “copy cell contents”, ...]).
An executable routine specification is a specification that contains all the infor-
mation required to fully reproduce the routine via a dedicated execution engine
or to synthesize a script that can be executed using an RPA tool or a similar
type of automation tool.

This chapter reviews the state of the art in the field of RPM and provides a
structured overview of the steps of a typical RPM pipeline, the techniques that
may be employed in each of these steps, as well as open research challenges on
the way to realizing mature RPM tool sets.

The chapter is partially based on a previous journal article [29]. The chapter
extends this journal article by positioning the vision of RPM within the broader
context of task mining and process mining, and by providing an updated review
of related work in the field.

The rest of the chapter is structured as follows. Section 2 gives an overview of
techniques related to robotic process mining, including task mining and process
mining, and gives an overview of existing work on identification of task automa-

5 In this chapter, we use the acronym UI to refer to a user interaction, not to be
confused with a user interface which is another common use of this acronym.
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tion opportunities. Section 3 presents a framework for robotic process mining
and introduces techniques covering each component of the framework. Finally,
Section 4 discusses open challenges in the field of robotic process mining.

2 Background

2.1 Robotic Process Automation

RPA is a class of tools to automatically execute sequences of steps (herein
called routines) involving interactions between a user and a software applica-
tion, or interactions between multiple applications via Application Program-
ming Interfaces (APIs). In an RPA tool, the execution of a routine is driven by
a pre-specified script, which consists of atomic steps corresponding to individual
interactions, assembled together via control-flow structures (if-then-else state-
ments, repeat-until loops, etc.) [40]. A common characteristic of RPA tools is
that they are able to “operate on the user interfaces of computer systems in the
way a human would do” [1]. For example, an RPA tool may perform clicks or
keystrokes on the user interface of a desktop application to mimic a sequence of
steps that would normally be performed by a human operator. Examples of RPA
tools, as of the time of writing this chapter, include Automation Anywhere RPA
Workspace6, Blue Prism Intelligent Automation Platform7, Microsoft Power Au-
tomate Desktop8, RocketBot9, and UiPath Platform.10

Typically, RPA tools include a design environment, where different types of
users, ranging from software developers to business users, may specify and test
scripts to automate one or more routines. Each such script is then embedded
into a so-called software bot. A bot is a unit of execution in an RPA tool. A
bot is responsible for executing a given script whenever a given type of trigger
occurs. Bots are operated via so-called control dashboards, which allow human
operators to oversee the work performed by a collection of bots.

Depending on how the control dashboard is used, we can distinguish two
RPA use cases: attended and unattended [40]. In attended use cases, the bot is
triggered by a user. During its execution, an attended bot may provide data to
a user and take in data from a user. In these use cases, the user may run the
bot’s script step-by-step, pause or stop the bot, or otherwise intervene during
the script’s execution. Attended bots are suitable for routines where dynamic
inputs are required (i.e. inputs gathered during a routine execution), where some
decisions or checks require human judgment, or when the routine is likely to
have unforeseen exceptions. For example, entering data from an invoice in a
spreadsheet format into a financial system is an example of a routine suitable for
attended RPA, given that in this setting, some types of errors may have financial

6 https://www.automationanywhere.com/
7 https://www.automationanywhere.com/
8 https://powerautomate.microsoft.com/
9 https://www.rocketbot.com/

10 https://www.uipath.com/
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consequences. Unattended RPA bots, on the other hand, execute scripts without
human involvement and do not take inputs during their execution. Unattended
RPA bots are suitable for executing deterministic routines where all execution
paths (including exceptions) are well understood and can be codified. Copying
records from one system into another via their user interfaces through a series of
copy-paste operations is an example of a routine that an unattended bot could
execute. In this chapter, we focus on unattended RPA bots.

Figure 1 presents a simple lifecycle model of RPA bots, which we use below to
position the role of robotic process mining.11 According to this lifecycle model,
an RPA bot goes through four phases:

Analysis

Development

Testing

Deployment 
and 

maintenance

Fig. 1. Simple RPA bot lifecycle [20]

– Analysis. In this phase, analysts identify candidate routines for automa-
tion, examine the current ways of their execution (e.g. by constructing the
as-is process model), assess the costs and benefits of their automation as
well as the related risks, and analyze whether the identified routines can be
automated without being redesigned.

– Development. In this phase, the routines identified earlier are automated.
This involves constructing a process model representing the desired execution
of the routines to be automated (i.e. the to-be process model). Then RPA de-
velopers implement the routine using a specialized development environment
by creating an executable software script, a.k.a. RPA bot. Depending on the
complexity of the task to be automated, this requires a different amount
of coding. Large enterprise RPA tools such as UiPath or Automation Any-
where allow for the creation of the scripts by dragging and dropping the
required functions (e.g. open a file, copy a cell). Since this step requires a

11 For the sake of conciseness, the RPA bot lifecycle model discussed here consists
of four coarse-grained phases. A finer-grained RPA bot lifecycle can be found, for
example, in [13].
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large amount of manual, error-prone work, a code review and script evalua-
tion are required.

– Testing. In this phase, the implemented bot undergoes testing in a pre-
production environment. It is evaluated in the different scenarios to examine
whether it works as intended and how it handles exceptions. If the tests are
successful, the bot proceeds to the deployment phase. If the tests fail, it is
sent back to the developers to identify and fix the identified issues.

– Deployment and maintenance. After successful testing, the bot is de-
ployed in the production environment and is ready to be used via a control
dashboard. As the bot performs its work, certain issues may arise. In this
case, the bot may be sent back to the testing or development phases.

In this chapter, we focus on techniques that leverage UI logs to support the
analysis and development phases of RPA bots.

2.2 Task Mining

Task mining is a collection of techniques for analyzing the execution of tasks
performed by human workers, based on records of interactions between these
workers and one or more software applications. Depending on the goal of the
analysis, we can distinguish between three use cases of task mining [23]: (i) task
discovery and optimization; (ii) resource and workforce optimization; and (iii)
task automation.

Task discovery and optimization. In this use case, the goal is to discover how
a task is performed by one or more workers, to identify deviations with respect
to policies or work instructions related to that task, and/or to uncover ways
of improving the performance of the task. By applying task mining techniques
to a task, we may discover that different workers perform the task in different
ways. For example, one worker might open all the desktop windows required to
perform a task upfront (e.g. an email client, a spreadsheet application, and a
browser window connected to a CRM system), and only once all windows are
open, they start navigating across these windows to complete the task. Another
worker might start performing the task in one desktop window (e.g. the email
client’s window) and then open the other windows incrementally. Similarly, one
worker might usually execute a task in a single go, without interruptions, while
another might interleave the execution of the task with other work, or might
multitask.

Having identified how a task is performed by one or more resources, task
mining can help us to identify steps in a task that are responsible for delays
(bottlenecks), as well as common rework loops or workarounds with respect to
normative work instructions. Task mining also allows us to relate the sequences
of steps that different workers perform with performance measures, such as the
mean cycle time of a task or the defect rate of a task. For example, task mining
may help us to identify that when a given step, such as clicking on a given cell
number in a sheet, is repeated multiple times, the mean cycle time of a task is
significantly higher than when this cell is visited only once.
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Resource and workforce optimization. In this use case, the goal is to iden-
tify inefficiencies in the way tasks are assigned to resources, or conversely, to
uncover ways to improve the assignment of tasks. For example, by analyzing UI
logs, we may find that when an invoice entry task relates to an invoice from
a company in country X, it takes more time for worker A to perform the task
(rather than another worker B) whereas the opposite holds for invoices coming
from country Y. We might also find that when worker A performs an invoice data
entry task after 4:30pm, the task gets completed faster, but when this happens,
some fields in the invoice are left unfilled, which might then be causing issues
downstream.

Task automation and robotic process mining. In this use case, the goal is
to discover opportunities to automate a task or part of a task. The automation
of a task can be achieved using a variety of technologies. For example, if a task
involves information flows between multiple applications, one could use middle-
ware technology to programmatically connect these applications, thus replacing
the manual information flow with an automated (programmatic) flow. Another
approach is to develop and RPA bot to transfer data from one application to
another by replicating the user interactions that a human worker would do to
achieve this. Robotic Process Mining (RPM) refers to the use case of task min-
ing where UI logs are analyzed in order to identify frequent routines that can be
automated by means of one or more RPA bots. The rest of this chapter focuses
on this latter use case of task mining.

2.3 Relations Between Task Mining and Process Mining

Task mining is in many ways related to process mining, particularly to techniques
for automated process discovery (cf. Chapters 2 and 3). However, task mining
and process mining differ in several respects. These differences stem from the
differences in the inputs of these techniques. Process mining take as input event
logs extracted from enterprise systems that support the execution of one or
more business processes in an organization – e.g. Enterprise Resource Planning
(ERP) or Customer Relationship Management (CRM) systems, as discussed in
Chapter 1. Meanwhile, task mining techniques take as input UI logs, consisting
of records of micro-steps performed by workers while they interact with software
applications to perform individual tasks in a process. Both types of logs consist
of timestamped records, such that each record refers to the execution of an action
(or task) by a user. Also, each record may contain a payload consisting of one
or more attribute-value pairs. However, UI logs and event logs differ in at least
four ways.

First, event logs intended for process mining consist of events at a finer level
of granularity than UI logs. An event in an event log typically refers to the start,
completion or other significant state change in the execution of a task within a
business process, such as Check purchase order or Transfer student records. Such
tasks can be seen as a composition of lower-level (micro-)steps, which may be



Robotic Process Mining 7

recorded in an UI log. For example, task Transfer student records may involve
multiple actions to copy the records associated with a student (name, surname,
address, course details) from one application to another. In other words, an UI
log may contain dozens or even hundreds of entries per task execution, whereas
an event log would typically only contain one or a handful of entries per task
execution. Also, the payload of the events in an event log may contain low-
level information such as the specific cell or the pixel coordinates involved in
a user interaction, or it may be associated to a screenshot taken during a user
interaction. In contrast, event logs contain business-relevant attributes, such as
the amount of a loan offer, the interest rate, the repayment term, etc.

Second, UI logs do not come with a notion of case identifier (or process
instance identifier), whereas event logs typically do. In other words, events in
an UI log are not explicitly correlated. A typical UI log consists of thousands of
user interactions recorded during a period of several hours on the workstation(s)
of one or more workers. Prior to being used, such UI logs needs to be segmented
into logical units corresponding to task executions, as discussed later in this
chapter.

Third, a record in an event log often does not contain all input or output data
used or produced during the execution of the corresponding task. For example,
a record in an event log corresponding to an execution of task Transfer student
records, is likely not to contain all attributes of the corresponding student (e.g.
address). Meanwhile, an UI log typically collects all the data observed during
the execution of a task, particularly when the UI log is intended to be used for
RPM purposes. Indeed, if some input or output attributes are missing in the
UI log, the resulting routine specification would be incomplete, and hence the
resulting RPA bot would not perform the routine correctly.

A fourth difference is that event logs are typically obtained as a by-product
of transactions executed in an information system, rather than being explicitly
recorded for analysis purposes. The latter characteristic entails that event logs
are more likely to suffer from incompleteness, including missing attributes as
discussed above, but also missing events. For example, in a patient treatment
process in a hospital, it may be that the actual arrival of the patient to the
emergency room is not recorded when a patient arrives by themselves, but it is
recorded when a patient arrives via an ambulance. In other words, the presence
or absence of an event in an event log depends on whether or not the information
system is designed to record it, and whether or not the workers actually record
it. Meanwhile, an UI log is recorded specifically for analysis purposes, which
allows all relevant events to be collected subject to the capabilities of the UI
recording tool.

The above differences in the input entail that it is often not possible nor
desirable to use the same techniques for process mining as for task mining.
In the field of process mining, a typical visualization consists of a graph with
one node per activity. The emphasis of these techniques is to show the most
frequent control-flow dependencies between the activities of the process. This
approach is not feasible in the context of task mining because the steps are fine-
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grained and therefore too numerous to be displayed in their entirety. Besides,
only certain steps are relevant for a given use-case, specifically those that are part
of a frequent routine. Accordingly, a task mining technique typically starts by
pre-processing the UI log in order to extract only the most frequent sequences of
steps (i.e. the most frequent routines) using sequence pattern mining techniques,
or using event abstraction techniques such as those developed in the field of
process mining [41].

Notwithstanding these differences, several commercial process mining ven-
dors, such as Apromore12, Celonis13, and Minit14, take advantage of the com-
monalities between UI logs and business process event logs to offer task mining
features. Typically, these tools discover directly-follows graphs (cf. Chapter 2)
from UI logs or from combinations of event logs and UI logs. For example, these
tools may discover directly-follows graphs to visualize the sequences of screens
visited by a user during the performance of one or more tasks, or to visualize
the most frequent or the slowest steps during the performance of a task.

These visualizations are suitable when analyzing tasks for the purpose of task
optimization and workflow optimization (cf. the first two use-cases above). They
can also help users to visually detect candidate routines for automation, when
those routines have a simple structure (e.g. perfect sequences of steps). However,
beyond simple scenarios, these visualizations do not allow users to determine if
a given task contains routines that can be automated by means of an RPA
bot. In this respect, RPM techniques complement task mining techniques by
explicitly addressing the questions of: (1) how to identify candidate routines for
automation? and (2) how to derive an executable specification of a routine that
has been identified as a candidate for automation?

3 Robotic Process Mining: A Framework

RPA tools are able to automate a wide range of routines, raising the question
how to identify routines in an organization that may be beneficially automated
using RPA? [38] To address this question, we envision a new class of tools,
namely Robotic Process Mining (RPM) tools.

We define RPM as a class of techniques and tools to analyze data collected
during the execution of user-driven tasks to support identifying and assessing
candidate routines for automation and discovering routine specifications that
RPA bots can execute. In this context, a user-driven task is a task that in-
volves interactions between a user (e.g. a worker in a business process) and one
or more software applications.

Accordingly, the primary source of data for RPM tools consists of user in-
teraction (UI) logs. RPM aims at assisting the analysts in drawing a systematic
inventory of candidate routines for automation and help them to produce exe-
cutable specifications that can be used as a starting point for their automation.

12 https://apromore.com
13 https://celonis.com
14 https://minit.io
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3.1 UI Logs and Routines

Fig. 2 presents a class diagram capturing the core concepts and RPM and their
relations. In this class diagram, the two main concepts are User Interaction log
(UI log) and Routine. UI logs are the input of RPM, while routines (represented
as routine specifications or as RPA scripts) are the output of RPM.

implements

User interaction

timestamp
type
payload engages

UserInformation system 11..*
impacts

1..*1

User interaction log

name

Task trace

Routine

activation condition

describes

Routine specificationRPA script

1

0..* 1..*

1

0..*

1..*

0..* 111

Text

Fig. 2. Class diagram of RPM concepts

An UI log is a chronologically ordered sequence of user interactions, or UIs in
short, performed by a single user in a single workstation and involving interac-
tions across one or more applications (including web and desktop applications).
An example of an UI log, which we use herein as a running example, is given in
Table 1.

Each row in this example corresponds to one UI (e.g. clicking a button or
copying the content of a cell). Each UI is characterized by a timestamp, a type,
and a set of parameters, or payload (e.g. application, button’s label or value of a
field). To be useful in the context of RPA, the payload should contain sufficient
information for a software bot to reproduce the performed activity. For example,
for a UI that refers to clicking a button, it is important to store a unique identifier
of this button (e.g. either the element identifier, or its name if this is unique in
the page). Likewise, for an event that refers to editing a field, an identifier of the
field as well as a new value assigned to that field are required attributes. The
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8

UI UI Payload
Row Timestamp Type P1 P2 P3 P4 P5 P6

1 2019-03-03T19:02:23 Navigate to (web) https://www.unimelb.au 204 google search – – –

2 2019-03-03T19:02:26 Click Button (web) https://www.unimelb.au New record newRecord Button – –

3 2019-03-03T19:02:28 Select Cell (Excel) StudentRecords Sheet1 A 2 “John” –

4 2019-03-03T19:02:31 Select Field (web) https://www.unimelb.au First Name first input “” –

5 2019-03-03T19:02:37 Edit Field (web) https://www.unimelb.au First Name first input “John” –

6 2019-03-03T19:03:56 Create New Tab (web) https://chrome/new-tab/ 219 New Tab – – –

7 2019-03-03T19:03:56 Select Tab (web) https://chrome/new-tab/ 219 New Tab – – –

8 2019-03-03T19:04:05 Navigate to (web) https://www.facebook.com 219 New Tab – – –

9 2019-03-03T19:07:50 Select Tab (web) https://www.unimelb.au 204 New record – – –

10 2019-03-03T19:08:02 Select Field (web) https://www.unimelb.au Last Name last input “” –

11 2019-03-03T19:08:05 Edit Field (web) https://www.unimelb.au Last Name last input “Do3” –

12 2019-03-03T19:08:08 Select Field (web) https://www.unimelb.au Last Name last input “Do3” –

13 2019-03-03T19:08:12 Edit Field (web) https://www.unimelb.au Last Name last input “Doe” –

14 2019-03-03T19:08:16 Select Field (web) https://www.unimelb.au Birth Date date input “” –

15 2019-03-03T19:08:20 Edit Field (web) https://www.unimelb.au Birth Date date input “18-11-1992” –

16 2019-03-03T19:08:24 Select Field (web) https://www.unimelb.au Country of residence country input “” –

17 2019-03-03T19:08:27 Edit Field (web) https://www.unimelb.au Country of residence country input “Australia” –

18 2019-03-03T19:08:31 Click Button (web) https://www.unimelb.au Submit submit submit – –

19 2019-03-03T19:08:35 Click Button (web) https://www.unimelb.au New record newRecord Button – –

20 2019-03-03T19:08:38 Select Cell (Excel) StudentRecords Sheet1 A 3 “Albert” –

21 2019-03-03T19:08:40 Copy Cell (Excel) StudentRecords Sheet1 A 3 “Albert” “Albert”

22 2019-03-03T19:08:42 Select Field (web) https://www.unimelb.au First Name first input “” –

23 2019-03-03T19:08:43 Paste (web) https://www.unimelb.au First Name first input “” “Albert”

24 2019-03-03T19:08:44 Edit Field (web) https://www.unimelb.au First Name first input “Albert” –

25 2019-03-03T19:08:47 Select Cell (Excel) StudentRecords Sheet1 B 3 “Rauf” –

26 2019-03-03T19:08:49 Copy Cell (Excel) StudentRecords Sheet1 B 3 “Rauf” “Rauf”

27 2019-03-03T19:08:52 Select Field (web) https://www.unimelb.au Last Name last input “” –

28 2019-03-03T19:08:53 Paste (web) https://www.unimelb.au Last Name last input “” “Rauf”

29 2019-03-03T19:08:54 Edit Field (web) https://www.unimelb.au Last Name last input “Rauf” –

30 2019-03-03T19:08:59 Select Cell (Excel) StudentRecords Sheet1 C 3 “08/09/1989” –

31 2019-03-03T19:09:02 Copy Cell (Excel) StudentRecords Sheet1 C 3 “08/09/1989” “08/09/1989”

32 2019-03-03T19:09:07 Select Field (web) https://www.unimelb.au Birth Date date input “” –

33 2019-03-03T19:09:10 Paste (web) https://www.unimelb.au Birth Date date input “” “08/09/1989”

34 2019-03-03T19:09:12 Edit Field (web) https://www.unimelb.au Birth Date date input “08-09-1989” –

35 2019-03-03T19:09:17 Select Cell (Excel) StudentReords Sheet1 D 3 “Germany” –

36 2019-03-03T19:09:21 Copy Cell (Excel) StudentRecords Sheet1 D 3 “Germany” “Germany”

37 2019-03-03T19:09:26 Select Field (web) https://www.unimelb.au Country of residence country input “” –

38 2019-03-03T19:09:32 Paste (web) https://www.unimelb.au Country of residence country input “” “Germany”

39 2019-03-03T19:09:35 Edit Field (web) https://www.unimelb.au Country of residence country input “Germany” –

40 2019-03-03T19:09:48 Edit Field (web) https://www.unimelb.au International Student international checkbox TRUE –

41 2019-03-03T19:09:54 Click Button (web) https://www.unimelb.au Submit submit submit – –

. . . . . . . . . . . . . . . . . . . . .

Table 1. Fragment of a user interaction log

payload of a UI is not standardized and depends on the UI type and application.
Consequently, the UIs recorded in the same log may have different payloads. For
example, the payload of UIs performed within a spreadsheet contains information
regarding the spreadsheet name and the location of the target cell (e.g. the cell’s
row and column). In contrast, the payload of the UIs performed in a web browser
contains information regarding the webpage URL, the name and identifier of the
UI’s target HTML element, and its value (if any).

An UI log consists of interactions of different types. To illustrate the types of
interactions that may be exploited in the context of robotic process mining, Ta-
ble 2 provides the concrete list of UI types (and associated parameters) supported
by the Action Logger tool [30]. Action Logger is an open-source UI recording
tool designed to record events generated by browsers and desktop applications,
in a way that enables the discovery of automatable routines.

Note that in Table 2, the UI types are grouped into three groups: navigation,
read, and write UIs. Navigation UIs correspond to actions that affect the state
of the user interface, but without reading or writing any data. This includes, for
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example, moving from one tab to another in a broader, or selecting a cell in an
Excel spreadsheet. Read actions are those where some data item is accessed, for
example in order to copy it into the clipboard. Meantime, “write” actions are
those where data is written into an element of the UI, for example, pasting the
contents of the clipboard into the currently selected cell of an Excel spreadsheet.

UI UI Parameter Names
Group Type P1 P2 P3 P4 P5 P6

Navigate

Create New Tab (web) URL ID Title
Select Tab (web) URL ID Title
Close Tab (web) URL ID Title

Navigate To (web) URL Tab ID Tab title
Add Worksheet (Excel) Workbook Worksheet

Select Worksheet (Excel) Workbook Worksheet
Select Cell (Excel) Workbook Worksheet Cell column Cell row Value

Select Range (Excel) Workbook Worksheet Range columns Range rows Value
Select Field (web) URL Name ID Type Value

Read
Copy (web) URL Name ID Value Copied content

Copy Cell (Excel) Workbook Worksheet Cell column Cell row Value Copied content
Copy Range (Excel) Workbook Worksheet Range columns Range rows Value Copied content

Write

Paste Into Cell (Excel) Workbook Worksheet Cell column Cell row Value Pasted content
Paste Into Range (Excel) Workbook Worksheet Range columns Range rows Value Pasted content

Paste (web) URL Name ID Value Pasted content
Click Button (web) URL Name ID Type
Click Link (web) URL Inner text Href
Edit Field (web) URL Name ID Type Value
Edit Cell (Excel) Workbook Worksheet Cell column Cell row Value

Edit Range (Excel) Workbook Worksheet Range columns Range rows Value

Table 2. User interaction types and their parameters

To obtain an UI log suitable for RPM, all UIs related to a particular task
have to be recorded. This recording procedure can be long-running, covering a
session of several hours of work if the user performs multiple instances of this
task one after the other. During such a session, a worker is expected to perform a
number of tasks of the same or different types. The UI log shown in the example
above describes the execution of a task corresponding to transferring student
data from a spreadsheet into the web form of a study information system. The
web form requires information such as the student’s first name, last name, date
of birth, and country of residence. If the country of residence is not Australia,
the worker needs to perform one more step, indicating that the student will be
registered as an international student.

Each execution of a task (herein also called a task instance) is represented by
a task trace. In our running example, there are two traces belonging to a “new
record creation” task. From the log, we can see that the worker performed this
task in two different ways. In the first case, she manually filled in the form (UIs
1 to 18), while in the second case, she copied the data from a worksheet and
pasted it into the corresponding fields (UIs 19 to 41).

Given a collection of task traces, the goal of RPM is to identify a repetitive
sequence of UIs that can be observed in multiple task traces, herein called a
routine, and to identify routines amenable for automation. For each such routine,
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RPM then aims at discovering an executable specification (herein called a routine
specification). This routine specification may be initially captured in a platform-
independent manner and then compiled into a platform-dependent RPA script
to be executed in a given RPA tool.

3.2 RPM Phases

We distinguish three main phases in RPM: (1) collecting and pre-processing
UI logs corresponding to the executions of one or more tasks; (2) discovering
candidate routines for RPA; and (3) discovering executable RPA routines.15

Collecting and pre-processing UI logs. We decompose the first phase into
the recording step itself and two preprocessing steps, namely the segmentation
of the log into task traces and the simplification of the resulting task traces. We
map the second phase into a single step. Then, we decompose the third phase
into three steps: the discovery of platform-independent routine specifications, the
aggregation of routines with the same effects, and the compilation of the discov-
ered specifications into platform-specific executable scripts. This decomposition
of the three phases into steps is summarized in the RPM pipeline depicted in
Fig. 3. Below we discuss each step of this pipeline.

The recording of an UI log involves capturing low-level UIs, such as selecting
a field in a form, editing a field, opening a desktop application, or opening a
web page. UI log recording may be achieved by instrumenting the software ap-
plications (including web browsers) used by the workers via plug-in or extension
mechanisms. Logs collected by such plug-ins or extensions may be merged to
produce a raw UI log corresponding to the execution of one or more tasks by a
user during a period of time. This raw log usually needs to be preprocessed to
be suitable for RPM.

The main challenge in this step is to identify what UIs must be recorded.
The same UI (e.g. mouse click) can either be important or irrelevant in a given
context. For example, a mouse click on a button is an important UI, but a
mouse click on a web page’s background is an irrelevant UI. Also, when a worker
selects a web form, we need to record UIs at the level of the web page (the
Document Object Model – DOM) in order to learn routines at the level of logical
input elements (e.g. fields) and not at the level of pixel coordinates, which are
dependent on screen resolution and window sizes. Existing UIs recording tools,

15 Once an RPA routine has been automated via an RPA bot, a fourth phase is to
monitor this bot to detect anomalies or performance degradation events that may
signal that the bot may need to be adjusted and re-implemented or retired. While
relevant from a practical perspective, this phase is orthogonal to the three previous
phases since it is relevant both for bots developed manually and bots developed
using RPM techniques. Furthermore, previous work has shown that existing process
mining tools are suitable for analyzing logs produced by RPA bots for monitoring
purposes [17].
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Fig. 3. RPM pipeline

such as JitBit Macro Recorder16, TinyTask17, and WinParrot18, save all the UIs
performed by the user at a too low level of granularity, with reference to pixel
coordinates (e.g. click the mouse at coordinates 748,365). As a result, the UI
logs generated by these tools are not suitable for extracting useful routines. The
RPA tools mentioned in Section 2.1 (e.g. UiPath and Automation Anywhere)
provide recording functionality. However, this functionality is intended to record
RPA scripts. These tools do not capture details about different fields’ values, as
these values are not relevant for RPA script generation. For example, an RPA
script must know which cell in a spreadsheet has to be copied, and it is agnostic
to the value stored in that cell. Hence, a new family of recording tools is needed
to record UI logs required for RPM.

In [30], we introduced a tool to record UI logs in a format that is suitable
for RPM. The tool records not only the UI actions (selecting a field, editing a
field, copying into or pasting from the clipboard) but also the values associated
with these actions (e.g. the value of a field after an editing event). The tool
supports MS Excel and Google Chrome. The tool also simplifies the recorded

16 https://www.jitbit.com/macro-recorder/
17 https://www.tinytask.net/
18 http://www.winparrot.com/
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UI logs by removing redundant events (e.g. double-copying without pasting,
navigation between cells in Excel without modifying or copying their content).
The applicability of such tool, however, is limited to desktop applications that
provide APIs for listening to UI events and accessing the data consumed and
produced by these events. To achieve a more general solution, it may be necessary
to combine this latter approach with OCR technology in order to detect UI events
and associated data from application screenshots, as outlined in [35, 32].

In its raw form, an UI log consists of one single sequence of UIs recorded dur-
ing a session. During this session, a user may have performed several executions
of one or multiple tasks, that may be mixed up in the log. Moreover, in case
of multi-tasking, UIs of multiple concurrent task executions may be mixed to-
gether. Before identifying candidate routines for automation, an UI log has to be
segmented into task traces, such that each trace corresponds to the execution of
one task instance. This involves the identification of the boundaries of the tasks
and the assignment of UIs to specific task traces. Given the fragment of the UI
log demonstrated in the running example, we can extract two segments, each
corresponding to the processing of a specific entry in the spreadsheet containing
students’ data (UIs 1 to 18 and 19 to 41 in Table 1).

The problem of extracting segments from an UI log corresponding to task
instances is similar to that of web session reconstruction [37], where the goal is to
identify the beginning and the end of web navigation sessions in server log data
(e.g. streams of clicks and web page navigation) [37]. Methods for session recon-
struction are usually based on heuristics that rely on the structural organization
of websites or time intervals between events. The former approach covers only
the cases where all the user interactions are performed in the web applications.
In contrast, the latter approach assumes that users make breaks in-between two
consecutive segments – in our case, two routine instances.

The problem of segmentation is also related to that of preprocessing so-called
uncorrelated event logs in process mining. As discussed in Chapters 1 and 2, each
event in a log should include, as a minimum, a case identifier, a timestamp, and
an activity label. When the events of an event log do not have a case identi-
fier, the log is said to be uncorrelated. Various methods have been proposed
to extract correlated (i.e. regular) event logs from uncorrelated ones. However,
existing methods in this field address the problem in restrictive settings. Specif-
ically, some approaches [14] assume that the underlying process is acyclic, while
others [8, 7] assume that an explicit process model is given as input (in addition
to the uncorrelated event log). These assumptions do not hold in the context of
RPM, where no explicit process model is available, and a routine may contain
repetitions. Also, the above approaches sometimes produce inaccurate results,
whereas in the context of RPM, we need to identify routines with high levels
of confidence (preferably 100% confidence), since an inaccurate replication of a
routine by an unattended RPA bot may lead to costly errors.

In some scenarios, segmentation may be accomplished by combining trans-
actional data recorded by enterprise information systems and user interactions
logs, as proposed in [32]. However, a shortcoming of this approach is that such
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transactional data often provides only limited information about the process
context, which is not enough to identify the boundaries of tasks captured in the
user interactions logs.

Recent work on UI log segmentation [3, 5] proposes to use trace alignment be-
tween the logs and the corresponding interaction models to identify the segments.
In practice, however, such interaction models are not available beforehand.

Another related work [27] proposes to discover segments in the log by iden-
tifying cycles in the graph constructed from this log. These cycles represent
repetitive behavior in the log and thus potentially correspond to task instances
recorded in the log. However, this approach assumes that the task instances
recorded in the log do not overlap and occur consequently one after the other.

In the context of desktop assistants, research proposals such as TaskTracer
and TaskPredictor have tackled the problem of analyzing UI logs generated by
desktop applications to identify the current task performed by a user and to
detect switches between one task and another [36, 12]. These approaches can
potentially be used to split the UI logs into segments corresponding to different
tasks. However, such approaches are not able to distinguish different instances
of the same task.

Ideally, UIs recorded in a log should only relate to the execution of the
task(s) of interest. However, in practice, a log often also contains UIs that do
not contribute to completing the recorded task(s). We can consider such UIs to
be noise. Examples of noise UIs include a worker browsing the web (e.g. social
networking) while executing a task that does not require doing that, or a worker
committing mistakes (e.g. filling a text field with an incorrect value or copying
a wrong cell of a spreadsheet). UIs 6, 7, 8, 9, 10, and 11 are noise in our running
example. During the creation of the student record, the worker decided to make
a small pause, switched to a new tab in the web browser (6-7), and navigated to
Facebook (8), where she spent almost 4 minutes browsing the news feed, before
going back to the tab with the active student form (9). All these UIs do not
have any relation to the task being recorded; thus, they constitute noise. When
performing the task, the worker selected a surname field in the form (10) and
made a mistake by accidentally misspelling the surname of the student (11). She
then had to select the same field again (12) and fill it in with the correct value
(13). Although the UIs 10 and 11 belong to the performed task, their effects
are overwritten by successive UIs (e.g. UI 11 is overwritten by UI 13) and,
therefore, they do not affect the outcome of the routine and are considered to
be noise. The presence of the noise may negatively affect the subsequent steps of
the RPM pipeline (e.g. the discovery of the candidate routines). Accordingly, the
next step in the RPM pipeline is simplification, which aims at noise identification
and removal. The UIs in the log are removed so that the resulting log captures
the same effects as the original one while being simpler (i.e. having fewer UIs).

One of the challenges that arises during the pre-processing step of the RPM
pipeline is to separate irrelevant UIs (i.e. noise) from those UIs that do contribute
to the completion of a task. A possible approach is to assume that noise takes
the form of chaotic events that may happen anywhere during process execution.
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One technique for filtering out such chaotic events is described in [39]. However,
if noise gravitates towards one particular state or set of states in the task (e.g.
towards the start or the end of the task), techniques such as the one mentioned
above may not discover it and consequently not filter it out. Moreover, some
UIs can be mistakenly removed due to the different ways the same task can be
performed and induce what may mistakenly appear to be chaotic sequences of
UIs. Thus, it is important to consider the data perspective, i.e. values of data
objects that are manipulated by the UIs. In this way, one can identify the UIs
that share the same parameter values (e.g. copying a value from a worksheet and
then pasting it in a web form), or have the same source/origin (e.g. all the UIs are
performed on the same website). The UIs that do not share any data parameters
and/or values or originate from different sources most likely constitute noise.

Discovering candidate routines for automation. Given a set of simplified
task traces, the next phase is to identify candidate routines for automation. This
phase aims at extracting repetitive sequences of UIs that occur across multiple
task traces, a.k.a. routines, and to identify which of those routines are amenable
for automation. The output of this step is a set of candidate routines for au-
tomation.

Even though an automated RPM tool can considerably reduce the effort re-
quired to automate routine, there is still a lot of development, quality assurance,
and maintenance effort required to automate a routine in a real-life setting. Also,
the automation of a routine may require re-training and re-allocation of human
workers involved in the process. And if the routine is only partially automated
(as opposed to fully automated), some handoffs will have to be put in place
between the manual and the automated parts of a routine. As a result, the costs
of automating a routine may sometime (or even often) outweigh the benefits.
Thus, the cost-benefit analysis of routine automation is an important step in an
end-to-end RPM method. To perform this analysis, a first step is to assess is a
routine is suitable for automation.

Mindful of this requirement, Lacity and Willcocks [24] propose high-level
guidelines for determining if a task is a candidate for automation in the context
of a case study at Telefonica. The guidelines, however, do not provide a formal
and precise definition of what makes a routine suitable for automation.

In a recent systematic review of the RPA literature, Syed et al. [38] conclude
that “there is a need for formal, systematic and evidence-based techniques to
determine the suitability of tasks for RPA.”. In other words, a major challenge in
the field of RPM is how to formally characterize what makes a routine amenable
for automation via RPA or other automation technologies.

Two necessary criteria for a routine to be amenable for automation are:

1. Frequency [17] The more frequently a routine is performed, the more its
automation is likely to lead to significant reductions in processing times,
waiting times, and defects (due to human mistakes).

2. Determinism [31, 9]. A candidate routine for automation should be such
that a software bot is always able to determine the next step it should
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perform next in order to complete an execution of the routine. In other
words, a routine can be automated only if: (1) every UI in the routine is
deterministically activated, meaning that we know when to execute it (e.g.
the box International is ticked whenever the student’s country of residence is
not Australia); and (2) every UI in the routine relies only on data produced
by previous UIs (e.g. one of the UIs in the routine consists in entering the
country of birth of a student into a field of a web form, and this data item
has been previously copied from a cell of a spreadsheet in a previous UI).

Considering the running example provided in Table 1 and assuming that the
identified task traces frequently occur in the log, we would discover two candidate
routines, handling the domestic and international students, respectively. Note
that the routine in the first task trace is only partially automatable. The worker
manually filled in the form by looking at the corresponding entry values in the
spreadsheet. Since she did not read the data values explicitly (e.g. by copying
the values to the clipboard), these values are unknown for the recording tool.
Hence, it is not possible to understand how the values used for editing the form’s
fields were obtained. On the other hand, the routine from the second task trace
is fully automatable, as it is clear how to compute the values for the fields of the
web form in the target application (i.e. by copying them from the spreadsheet).

Several techniques proposed in the field of UI log mining address the problem
of identifying routines that fulfill the “frequency” criterion. Dev and Liu [11] have
noted that the problem of frequent routine identification from (segmented) UI
logs can be mapped to that of frequent pattern mining, a well-known problem in
the field of data mining [19]. In the literature, several algorithms are available to
mine frequent patterns from sequences of symbols. Depending on their output,
we can distinguish two types of frequent pattern mining algorithms: those that
discover only exact patterns [25, 34] (hence vulnerable to noise), and those that
allow frequent patterns to have gaps within the sequence of symbols [42, 15]
(hence noise-resilient).

Bosco et al. [9] address the problem of discovering routines that fulfill the
“determinism” requirement. Specifically, this technique discovers sequences of
actions such that the input(s) of each action in the sequence (except the first
one) can be derived from the data observed in previous actions. However, this
technique can only discover perfectly sequential routines and is hence not resilient
to noise and variability in the order of the actions.

Leno et al. [26, 28] combine techniques for discovering frequent routines, with
techniques for discovering deterministic routines, thus addressing both of the
above requirements. This latter proposal also addresses the problem of syn-
thesizing an executable routine specification and that of detecting semantically
equivalent routines, as discussed later in this chapter.

The discovery of automatable routines from sequences of actions is related
to the problem of automated process discovery, discussed in Chapters 2 and 3
of this handbook. This relation is explored by Jiménez-Ramı́rez et al. [21], who
apply process discovery techniques to extract process models from segmented UI
logs. Importantly though, while it is possible to use automated process discovery
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algorithms to extract process models from segmented UI logs, the resulting pro-
cess models cannot readily be used for automation (via RPA or other automation
technology) for two reasons.

First, the process models discovered by process discovery techniques, such as
those presented in Chapters 2 and 3, are control-flow models. They capture the
occurrence and order of steps (tasks) in a process, but not the data taken as input
and produced as output by each step in the process. Yet, in order to automate a
routine, we need to know which data is used by each step in the routine and where
these data comes from. We note that a subset of process discovery approaches can
discover process models with data-driven branching conditions [10], or process
models where some control-flow relations only hold under certain data-driven
conditions [33], but they do not discover process models with data manipulation
logic.

Second, the process models produced by automated process discovery tech-
niques, typically contain traces that have not been observed (cf. the generaliza-
tion property discussed in Chapter 2). However, when the purpose of a model
is to serve as a blueprint for RPA, the generalization property is not desirable.
Indeed, if a software bot executes such a model, it will sometimes produce se-
quences of action that might not correspond to a sequence of actions that a
human worker would have performed. This, in turns, may lead to errors and
these errors may later require time-consuming and costly corrective actions. In-
stead, routines for RPA must be 100% precise (cf. the definition of precision in
Chapter 2), as a lack of precision may lead to potential errors when the routines
are executed by an unattended RPA bot.

Discovering executable routine specifications. Having identified a set of
candidate routines for automation, the next step is that of executable (sub-
)routine discovery. For each candidate routine, this step identifies the activation
condition (UIs 2 and 19 in Table 1), which indicates when an instance of the
routine should be triggered, and the routine specification, which specifies what
UIs should be performed within that routine, what data is used by each UI in
the routine, and how these data should be obtained.

The discovery of a routine specification involves identifying and synthesizing
the transformation functions that have to be applied to the input data to convert
it to the required format in the target application. In the running example, we
can see that the web form requires a different date format than the one used in
the spreadsheet (UIs 29 to 34). Hence, transferring the date of birth via simple
copy and paste operations is insufficient, and the transformation function must
be applied to achieve the desired result.

The problem of discovering executable routine specifications has been widely
studied in the context of table auto-completion and data wrangling. For example,
the Excel’s Flash Fill feature detects string patterns in the values of the cells
in a spreadsheet and uses these patterns for auto-completion [18]. Similarly, the
authors in [6] propose an approach to extract structured relational data from
semi-structured spreadsheets. However, such approaches can discover only the
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executable routines performed in one application and have a limited area of
usage. In practice, the RPA routines often involve many of these applications.

Bosco et al. [9] suggest that the discovery of executable routine specifications
can be tackled by applying methods for automated discovery of data transfor-
mations from examples [2, 22]. However, these methods suffer from scalability
issues when applied naively. Leno et al. [26] explore this approach and propose
a series of optimizations to improve performance of the data transformation dis-
covery techniques in the context of synthesis of routine specifications for RPA.
This approach is further elaborated by the same authors in [28].

Gao et al. [16] extract rules from segmented UI logs to automatically fill in
(web) forms. However, this approach only discovers branching conditions that
specify whether a given activity has to be performed or not (e.g. check a box
in a form) and only focuses on copy-paste operations without identifying more
complex manipulations.

Agostinelly et al. [4] present an approach to discover routines from segmented
UI logs and automate these routines via scripts. This approach, however, as-
sumes that all the actions within a routine are automatable. In practice, it is
possible that some actions have to be performed manually, and they can not be
automated.

The output of the executable (sub)routine discovery step is a set of executable
routine specifications of each automatable candidate routine. However, some of
these specifications may produce identical effects, as they describe different vari-
ants of the same routine (e.g. filling in a web form in different orders). These
variants are considered as duplicates and should be ignored, as their automation
will not bring any benefits to the organization. Therefore, the next step in the
RPM pipeline is aggregation. During this step, the discovered routine specifica-
tions leading to the same effects are replaced with one specification that captures
the optimal way of performing the underlying routine. Several routine specifi-
cations may also be combined into a more complex specification that contains
instructions on how to deal with different cases.

Once the script has been generated, it may be manually refined by an RPA
developer, tested, and deployed into a production environment. The bot can
be executed in attended or unattended settings. In attended settings, given an
activation condition extracted from the routine specification, it can notify the
user about its “readiness” to perform the routine when the condition is met and
can be paused during execution, so that the user can make small corrections
if needed and then resume the work. In unattended settings, the bot works
independently without human involvement.

4 Outlook

There are a number of research challenges that need to be overcome to realize
the vision of RPM, particularly in the areas of candidate routine discovery,
extraction of automatable routines, and aggregation of equivalent routines (cf.
Figure 3).
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In the area of candidate routine identification (and the related area of UI
log segmentation), existing techniques assume that the routine instances are
strictly separated in the UI log, i.e. there is no interleaving of user interactions
belonging to one instance of one routine, and user interactions belonging to
another instance of the same or of another routine. In practice, such interleaving
may occur, for example, when a user is multi-tasking and thus alternating their
attention between multiple routines.

In the area of automatable routine discovery, existing techniques are based
on data transformation discovery, and as such they are limited to data transfer
routines, where the goal is to take data from one system and transfer them to
another system. Furthermore, these techniques are limited in scope to discovering
routines where one record in one application, e.g. one row of a spreadsheet,
is copied into one or more fields of another application (e.g. a web form). In
reality, a single routine may involve complex iterations, for example, a routine
may involve copying an invoice containing multiple invoice line-items from one
application to another. In this case, the top-level routine (copying an invoice)
contains a nested iterated sub-routine (copying multiple line items). These kind
of structures cannot be discovered via existing data transformation discovery
techniques. These latter techniques can discover that there is a routine consisting
in copying an invoice line item, but they cannot reason holistically about the
higher-level routine where the entire invoice is copied.

The area of routine aggregation is still a green field of research. A fundamental
open problem in this space is the definition of notions of routine equivalence that
would allow us to detect, for example, that a routine performed by one worker is
the same as the one performed by another worker, even though these two workers
perform the steps in their respective routines in completely different ways.

The RPM techniques discussed in this chapter focus on the discovery of
routines that can be executed in an end-to-end manner by an RPA bot. This
assumption is constraining. In reality, routines may be automated for a certain
subset of cases, but not for all cases (i.e. automation may only be partially
achievable). A key challenge, which goes beyond the scope of the proposed RPM
pipeline, is how to discover partially deterministic routines. While a fully deter-
ministic routine can be executed end-to-end in all cases, a partially deterministic
routine can be stopped if the bot reaches a point where the routine cannot be
deterministically continued given the input data and other data that the bot
collects during the routine’s execution. For example, while copying records of
purchase orders from a spreadsheet or an enterprise system, a bot may detect
that this order comes from China and then it may stop because it does not
know how to handle such orders. Or, in a similar vein, a bot may find that a
PO number is missing (the corresponding cell is empty), and hence it cannot
proceed. Discovering conditions under which a routine cannot be deterministi-
cally continued (or started) is an open challenge in the field of RPM. Yet, this
capability is a precondition to ensure that bots synthesized via RPM techniques
can gracefully degrade and stop in order to hand off to human operators.
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Finally, the vision of RPM exposed in this chapter, focuses on the problem
of discovering automatable routines. Besides this problem, we envision that the
field of RPM will encompass complementary problems and questions such as
performance mining of RPA bots. This includes answering questions such as:
“What is the success or defect rate of a bot when performing a given routine?”,
“What patterns are correlated with or are causal factors of bot failures?”, and
“Are there cases where the effects of a bot’s actions are abnormal and warrant
manual inspection?” In other words, over time, we envision that the scope of
RPM will expand to cover the entire RPA lifecycle (cf. Figure 1), rather than
being purely focused on the development of RPA bots.
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